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NATIOHAL ADVISORY COMMITTEE FOR AERONAUTICS

TECIE_CAL NOi_ }_0. 134_

CRITICAL STRESS OF THIN-WALleD CYLINDERS IN TORSION

By S. B. Batdorf, Manuel Stein, and Murry Schlldcrout

\

A theoretical solution is given for the critical stress of

thin-walled cylinders loaded in torsion. The results are presented

in terms of a few simple formulas and curves which are applicable

to a wide range of cylinder dimensions from very short cylinders of

large radius to long cylinders of small radius. Theoretical

results are found to be in somewhat better agreement with experi-

mental results than previous theoretical work for the same range
of cylinder dimensions.

INTRODUCTION

For most practical purposes the solution to the problem of

the buckling of cylinders in torsion was given by Do_ne_ in an

imp6rtant contribution to shell theory published in 1933 (reference i).

The present paper, which gives a solution to the same problem,
has two maln objectives: first, to present a theoretical solution

of somewhat improved accuracy; second, to helpcomplete a series

of papers treating the buckling strength of curved sheet from a
unified viewpoint based on a method of analysis essentially

equivalent to that of Donnell but considerably simpler. (See,

for example, references 2 and 3.)

The method of solution in the present paper,is that developed

in reference 3. The steps in the theoretical computations of the
critical stress are contained In the appendix. The results are

given in the form of nondim_nsional curves and simple approximate

formulas which follow these curves closely in the usual range of
cylinder dimensions.

• !
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SYMBOLS

HACA TN No. 1344

J,m,n integers

P arbitrary constant

r radius of cyl_nder

t

U

:.thickness of cylinder wall

axial component of d_splacement; positive in x-direction

v circumferential component of displacement;positive in
y-direction

w radial component of displacement; positive outward

X

Y

D

E

L

axial coordinate of cylinder

circumferential coordinste of cylinder"

flexural stiffness °f plate per unit length _12(_Pt!£2)"_

Young's modulus

length of cylinder

Q mathem_tlcal operatordefined in appendix

Z _

anJ I_n

ks

curvature parameter <r 2-t#l' _2 or (r_)2 _l_-V)t

coefficients of deflection functions

critical shear-stress coefficient appearing in

formula 7cr = ks _2D ..
. L2t

= _ n2 + 62) 2 = 12Zgn4
Mn +

• _4(n2 + S2)e

Vm, Wm deflection functions defined in appendix

W

! li
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k

k half wave lensth of buckles in circumferential direction

Polsson's ratio

m critical shear stress
cr

-_x-_ +2 + --

V-4 @, defi i v-4 =

"RESULTS k,_D DISCUSSION

The critical shear stresses for cylinders are obtained from

the equation

Tcr kSL2 t

The values of. ks for cyiin_,ers with either s._]nplysupported or

clamped edges are g_ven in the form of logarit_hmic plots in

fi6_e 1. The ordinate in this flg_e is the critical She&r-

stress coefficient ks The abscissa is a ct_mvature parameter Z
which is gi',,endirectly by the theory and involves the dimensio.n.s
of the cylinder _nd Poisson's ratio.

For very short cylinAers the value-of the shear-stress coef-

ficlent approaches the values for flat plates, 5.34 when the edces
are simply supported and u.9o when the edges are clampe&.- As Z

increases ks alsoincreases and the curves which defined. 'hs

are given approximately by straight lines. For simply Supported
cylinders, . "

ks = o.8_z3/4

For cylirxlers with clampe& edges,

k s = 0.93 z 3/_
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The range of validity of these formulas is approximately

i00< Z < i0 r--_2.
t2

For the case of long cylinders the curves of f_gure i split

into a series of curves depending upon the radius-thicku_ess ratio.
These citrves, which correspond to buckling of the cylinder into

two circumferential waves (n = 2), depart from the straight lines

at approximately Z = I0_ 2 or approximately L= 3._ • Because
t2 r

the critical shear stress of a long cylinder is almost

independent of end conditions, the curves for different values

of r/t apply both to cylinders with simply supported edges and

to cylinders with clamped edges. These curves are probably some-

what inaccurate, however, because one of the requirements for the

validity of the simplified equation of equilibrium used is

that n2 >> 1. A calculation for long cylinders made by Schwerin

and reported in reference 1 by Donnell suggests that all values

corresponding to the curves given in the present paper for n = 2

are slightly high.

In figure 2 theresults of the present paper are compared with

those given by Donnell (reference l) and Leggett (reference 4).

The present solution agrees quite closely with that of Donnell

except in the transition region between the horizontal part and
the sloping stralght-line part of the curves. In this region the

present results are appreciably less _han those of Donnell
(maximum deviation about 17 percent) but are in close agreement with

Leggett's results, which are limited to low values of Z.

In figure 3 the present solution and that of Donnell for the

critical shear stress of simply supported cylinders are compared

on the basis of agreement with test results obtained by a number
of investigators. (See referencesl, 9, 6, and 7.) The curves

giving the present solution are appreciably closer to the test

points. Morethan 80 percent of the test points are within 20 percent

of the values corresponding to the theoretical curve fox' simply

supported cylinders given in the present paper, and all points
are wlthin 35 percent of values corresponding to thecurve.

In figure 4 the present solution for critical shear-stress

coefficients of long cylinders which buckle into two half waves

is given more fully than in figure i and is compared with test
results of references i and 8.

i! i|i
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The computed values from which the theoretico_ curves presented

in this paper were drawn are given in tables 1 and 2.

CONCLUDING RE_Jd_KS

A theoretical solution is given for the buckling stress of

thln-walled cylinders loaded in torsion. The results are applicable

to a wide range of cylinder dimensions from very short cylinders

of large radius to very long cylinders of small radius. The
t_eoretical results are found to be in somewhat better agreement with

experimental results than previous theoretical work for the same

range of cylinder dimensions. •

Langley Memorial Aeronautical Laboratbry

National Advisory Committee for Aeronautics

Langley Field, Va., March 20, 1947

i
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THEORETICAL SOL_i'ION

The critical shear stress at which buckling occtu,s in a

cyl_nlrical shell may be obtained by solving the equation of
equilibrium.

Equation of equilibrium.. The equation of @quillbrium for

a slightly buckled cylindrical shell under _shear is (reference 3)

_x _ + 27cr t -- = 0_x _y
(l)

where x is the axial direction and y the circ,nnferent_al

d_rection. The following figure shows the coordinate system

used in the analysis:

i

J
i

i
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Dividing through equation (i) by D gives

7

-_- _--g+ _s = o (2)

where the dimensionless parameters

and

Z and

Z -- --

rt

ks are defined by

w

where

i

The equation of equilibrium may be represented by

--o (3)

Q is defined by

loZ2v_ _ 34 _2 82
o.=v _ + _ _ + 2_=,L2 _x

t

Method of solution.- The equation of equilibrium may be solved

by using the Galerkin method as outlined in reference 9. In

applying this method, equation (3) is solved by expressing w in

terms of an arbitrary number of functions (Vo, V1, . . . Vj, WO,

Wl, •. .., Wj) that need not satisfy the equation but do satisfy

the boundary conditions on w; thus let

m=0 m=0
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The coefficient am and bm are then determined by the equations

>

j-wnQ dx --0
UO Uo

where

n = O, i, 2, . • ., J

The solutions given in the present paper satisfy the following

conditions at the ends of the cylinder:

For cylinders of short and medium length with simply supported
_w

edges w. = _ = v = 0 and u is unrestrained. For cylinders of
8w

sho1_t and medium length wlth clamped edges w = _x = u = 0 and v

unrestrained. For long cyliz_lers w = O. (Sge references 2 and 3.)

o .. . . -"

Solution for Cylinders of Short and Medium Length

Simply supported edges., A deflection function for simply

supported edges may be taken asthe infinlte series

is

where

cumferential direction.

if

-..

w =: L"sin-_Z •:';'am sin _i-':$ COS' " m"i'_sinT_'y T :
k .... L. ' " k ___.

• "" ' ; : _=1_,._ m=l___
i

k is the half wave length of the buckies in the ciP-

.Equation (6) is equivalent to equation (4)

• .Z

(6)
I i,
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Vn = s_n _Z sin n_x
X :L

C

Wn = cos _y sin n____xx
k L

Substitution of_expresslons (6) and (7) into equations (5) and

integration over the limits indicated give

9

(7)

an I (n2 +. 62)2 + 12Z2n4 -_ \ bm mn =

-: m=l

I

.bnl (n2 + #2)2 + l_Z2n4 .'] 8_'_'-- nun' + " ) am .=
=4fn2 _e_2 _ _ n2 - m2

'-: m=l
J

(8)

where

and m ± n

determin__nt vanishes:

.o

n = I, 2, 3,

is odd. Equations (8) have a solution if the following
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n=l

n=2

n=3

n=_

n=5

n=6

• n=l

n=2

n=3

n=4

n=5

n=6

a2 a_ a4 a5 a6 ... bIa1

ks_l 0 Q

°

0 0

0 0

D .0

0 0 0 ... 0

0 0 0 ... -_

o o o ... o 6
5

o kD_M4 o o . 4 o
"' -1-5

o o _ o . o .1o

_6 o0 0 0 "'" 35

_

0

w • • • .o
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b 3 b_ b5 b6 ...

o /L 0 %- ...
15 35

o 12 o ...
5 21

o z.__2 o e
7 3 "'"

-_- o 20
7 7 o ...

o -_ o 30 ...
9 ii

._ o .3o o ...
3 ii

,w • • . • • •

o -2 o -! o 6
3 ]-5 39 "'" ks"Z

2 0 _ 0 _ 0 o"- - ...

6 _ 1.__2 0 2 0
o 5 o 7 "] "'"

12
0 o .20 0 ... 0

15 7 9

o !o o _o o _..39. o
21 9 ii """

6 0 2 _ 0 ... 0
3-5 5 o _z

• • • • ,, • ,,

0 0 0 0 0 ...

0 0 0 0 ...

o _s_3 0 0 0 ...

0 0 kls--_4 0 o ...

0 0 0 .1---M 0
k s 5 "'"

0 0 0 0 _ ...

• • • ,J ,, • • • • • • •

(9)

Y

where

_---l-(n2 + _2) 2 +

By rearranging rows and columns, the infinite determinant can be factored

into the product of two infinite subdeterminants which are equivalent

to each other. The critical stress may then be obtained from the

following equation:
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n=l

:I=2

n=3

n=4

n=5

n=6

e

n=l

n=2

n=3

n=4

n=9

n=6

aI b2 a3 b4 aT b6 ... b1

o _ o T_ "" o

o o... o
6 1 12 2 0

o "_ k'%-M3 T o _ ...
__ 20o z2 I_%._ o ... o

19 7 _s 9

o lo o .P.O. _ 3o_"2"f 9 _ ... o

6 2 303"5 0 _ 0 --ii ... 0

a2

0

0

0

0

0

0

b3 at b5 a6 ...

0 0 0 0 ..

o o o o ...
0 0 0 0 . oll,

0, 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...

• Q • • • •

0 0

0 0

0 0

0 0

O. 0

0 0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

O' 0

• 0 0

I •

• • • "e - • • •

1 .e_ o 4o ..._ 3 -J.7
o ... -_ _% -_ o zo3 • 5 21

0 .:. 0 6 _ 125 3"T o
o .. o-¥""17 k.
0 ... 0 i0

21

0 .. 6 0
39

o 6
w_ • eo

35

gee

2
J I 0 0 e

3

• e@

0 -i_" ....

"g °'3° _63 ii """

• • • • • • • • • • • •

The first approximation, obtained from the second-order determinant,
is given by

=0

(zo)

(].z)
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The second approxlmation_, obtained from the thdrd-order determinant,

is given by_

ks2 ,, MIM2M3 (12)

The third approximation, obtained from the fourth-order determinant,

is _iv_n by

r

+ Ml M3M = o (1s)

J
i

Each of these equations shows that for a selected value of the

curvature parameter Z the critical buckling stress of a cylinder

depends on the wave length. Since a structure buckles at the lowest

stress at which instability can occur, ks is minimized with respect

to the wave length by substituting values of _ into the equation

until the minimum value of ks can be obtained from aTplot of ks

against 9. This procedure is permissible when _ > _ , that is,

when the cylinder buckles into more than two c_rcumferential waves.

For the limiting case of a cyllnder buckling into two waves,

see the section of the present appendix entitled "Solution for

a LoBg C_llnder" which follows.

Figure 9(a) shows the convergence of the determinant for cylinders

with simply supported edges.

Clamped edges.- A procedure similar to that used for cylinders

with simply supported edges may be followed for cylinders with

clamped edges. The deflection function used is the following
_eries:

w ,, sin am cos -_- - cos

m=O

+ cos bm os -_-- cos - (i_)

m=O

I |i
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K_ch term _f thls 8er_s satisfies the _or_dt_cn on W

The functions ¥_ and Wn are now deYIned as follows:

COS

JLWn = cos _yA[cos n____XL-

at t_ sages.

%

_here

n = O, i, 2, . . .

When the s_me o;erations as those carried out for the case
of simply supported edges are performed, the following simultaneous

equations result:

For n = O,

ao(2M 0 + M2) - a_242 + ks
i5 m2 (m+ 2)2 7 ='Z bm m-2--4 + (m"+_-2)2-A[ 0

m=1,3,5
%

For n = I,

al(M 1 + M3) - a3M 3 + ks

_ _(m. +

Fcr n = 2, 3, 4 • ..,

(m + 2)2 _ = 0

(m + 2i 2 - 9J

(m + 2) 2 - n 2 (m + 2)2 != o(_ + 2)_ - (= + 2)
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!

where m + n is odd. ,

For n = 0,

bo(_o+ M2)- _2½ - ks T_
m=l, 3,5

+ = 0
a_ m 2-_ (m+ 2)2-

For n = i_

\

Oo

bl(Ml + M3) - b3M 3 - ks ___--

m=O,2,_

r. 2_2 .=2 (m+ 2)2°,

_Lm2-1 ,_2-9 (m+2)2__

"= 0

For n : 2, 3, 4, . . .,

• . ,,.,-- [ m2 m2bn(lv'*n + _:in+2) bi'l-'_Mn, -bn+2Mn+2-ks h:_=r, am m2 - n2' -m 9- - ('n -I: 2) 2

w

=.. Cm + 2)2 + _ (m + 2)° I = 0 (16)
(m + 2)2:--n 2 (m + 2)2 - (n + 2)2

where m ± n is odd and

Mn = _ n2 + _2)e +
_ _4(n2 + #2)2|

The infinite determinant formed by these equations can be rearranged

so es to factor into the product of two determinants which are

equivalent to eech other. The vanishing of one of these determinants

leads to the following equation (limited for convenience to the
Sixth order):

F:! |
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n=O

n=l

n=2

n=3

n=4

n=5

ao bl a2 _3 a4 B5

3.._9 _s (MI+M3) 352]-5 1o9

1 352
-k-_ _(Me÷M4)

105

105 - ks 3 315

o 32 _ ..!_4
35

- 32 o _137.6
315 1155

-_--- o _ 3__2.
1o5 3].5

147.____2 - ks""1-_4 1376I155315

693

416o is (M4+M6) 94_q
693 1287

1 94_0 1 (Ms+M7)
-k-_ 1287 ks

:o (_7)

The first approximation, obtained from the second-order

determinant, is given by

_s2 = <_2 (2Mo+ M2)(Ml + M3) (].8)

The second approximation, obtained from the third-order determinant,

is given by

6_, 35 +
_--_/(_0-+_1

The third approximation, obtained from the fourth-order determinant,

is given by
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Solution for a Long CylLuder

( ) "A long slender cylinder Z > i0 r2 will buckle into two
t2

r

waves in the circumferential direction, If, in the previous
cages of cylinders with simply supported or clamped edges, the

half wave length in the circumferential direction _ is taken

as _r/2, it is possible to find the critical stress of a long

slender cylinder with the ccrrespondlng edge conditions. This

method of solution is laboriousj however, because determinants of

high order must be employed to obtain solutions of reasonable

accuracy. The labor is @reatly reduced by the use of the following
deflection function: "

(2l)

where

at the two ends of the cylinder measured in quarter-revolutions.
This equation _atisfies the single boundary condition w = O.

With this deflection function, the functions V and W all

vanish except

p + 1 is the phese difference of the circumferential waves

(22)

Use of equations (5), (21), and (22) and the relation

results in the following equation:

+ (p + + + (23)
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This equation may be written

ks ...-
8(; + i) p2, 4 zt _2

+ . _2z_4

( 4 zt _2

Zt " _2

_2 rjl -_ 2_]
_;_. [(P + 2) 2 +

12Z2(ip + .2) 4

tZt 2

_2 _// : : _2r 1- .

(2_)

. :... -:

; For given values of Z and -_Jl- #2 p is varleduntil_ a

minimum value of ks is obtained from a #lot of p and corresponding

values of ks. The critical stress Of a long slender cylinder is

very insensitive to edge restraint; therefore, the solution applies

with sufficient accuracy to cylinders with either simply supported

or clamped edges. The shear,stress coefficient for long slender

cylinders is plotted against the culwature parameter in figure _,

and parts of these curves also appear in figure i.

I

illil
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TABT_2 1

i .

THEORETICAL SHEAB-S'_RESS COEFFICIENTS A_rD WAVE LENGTHS

OF BU_(L.E.S FOR SHORT- AND MEDIUM-LENGTH CYLINDERS

Z

First approximation

ks

Second a_praximation Third approximation

ks

0

1

5
i0

3O
i00

30O

i, 000
I0,000

i00,000

5.69
6._
8.36

14.93
34.09
76.80

189.5
i079
6050

Cylinders

0.770
.8o5

1.00
1.24
1.82
2.74
3.86

5.40
lO.O

17.9

with simply supported edges

.... 0 ,

5.34
5.42
6.22

7.55
12.69
27.86
62.47

153.0
871.2

492O

0.790
.860

1.015

1.2 
1.875
2.91
4.18

5.95
lZ. 2

20.1

P

Cylinders with clamped edges

5._i 0.865

851.9
4800

11.8

23.0

O

1

5
lO

30
i00

i,OO0

iO, 000

9.55
9.57

9.90

10.79
16.13
35.40

206.3
6860

1.175
1.18

1.23
1.35

1.89
2.99
6.12

20.85

9.31

9.32
9.62

10.42

14.99

30.68
167.5

5449

1.20_
1.21

1.27
1.38
1.97
3.14
6.70

23.2

9.09

lO.19

30.65
169.7
5310

1.2o5

I l. 38

3.12

7.00
24.8

NATYONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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TABEE 2

THEGRETIC,tL _-STEEgS COEFFICIENTS

FOR LONG C'fLI_)_RS

2O

5O

i00

I
L

4x

3x

105

io6

2.5

lO5

1o6

lO 7

1o 5

io6

lO7

z

103

lO 4

x i0A

k 6

_.28

2,490

7,780

76,900

1,680

5,380

47j 900

476,000

4,800

35,200

334,500

NATIONAL ADVISORY

C@4MITTEE FOR AERONAUTICS
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Fig. 4 NACA TN No. 1344
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NACA TN No. 1344
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Figure 5.- Successive approximations of critical shear-stress

coefficients for thin-walled cylinder's in torsion. Dd
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